Four connected colonies. The top left and bottom right spin counterclockwise, and the top right and bottom left spin clockwise. (You can see this in the movies from the paper) |
The circular cavities are arranged in a lattice, either square or triangular, with a gap of a certain size connecting each one. Tuning the size of the gaps tunes the interactions between cavities, which are mediated by the row of bacteria on the edge of each circle next to the walls. If the gaps are narrow, the bacteria do not move through and they interact hydrodynamically through the flagella beats, and want to move in the same direction as their neighbour across the gap, which makes the vortices spin in opposite directions. If the gaps are wide, bacteria tend to line up along the walls of the gap, such that a row of bacteria will do a "180" going from one cavity to the next, meaning neighbours will move in opposite directions and thus the vortices will spin in the same direction.
This is cool and all, but at this point I should take a step back and actually explain why they are doing this experiment.
Physics is hard. There are very few complex problems that can be exactly solved, but there are computational methods that can get approximate solutions. One of these is called lattice field theory, where space and time are broken into finite-size steps (sites on a lattice), and interactions between adjacent lattice sites are considered and the system is simulated with a computer.
One of the simplest but most ubiquitous lattice models is called the Ising Model*, which is used to understand magnetic materials. In the Ising model, there is a lattice of "spins" that can either be "up" (+1) or "down" (-1), and the total energy of the system depends on whether each spin is pointing the same direction or the opposite direction as its neighbor**. (Imagine two adjacent wire loops with electrical current going around them, and consider the torques they exert on each other if the current is going in opposite directions. Then try to consider a thousand loops.) Materials where the spins want to point in the same direction are ferromagnetic (like iron) and materials where the spins want to point in opposite directions as their neighbor are called antiferromagnetic (like chromium). Solving the Ising model can be complicated, but it's much simpler than considering the interactions of $10^{23}$ interacting atoms.
A two dimensional Ising lattice, showing ferromagnetic order (left) and antiferromagnetic order (right). |
The authors wanted to see they could apply the Ising model to a living system, so the created these bacterial vortices to see if they obeyed Ising-like behaviour. From a thermodynamic standpoint, living matter is substantially more complicated than inert matter: it's constantly producing its own energy and is never in equilibrium. There is a whole relatively new branch of physics just dedicated to studying the thermodynamics of active matter. A network of colonies, each a network of bacteria, each a network of interacting proteins of incredible complexity, would be essentially impossible to model from a "bottom up" approach, but mapping it onto the Ising model would allow its large scale behaviour to be predicted and studied, and may open the door to more generally studying the physics of living systems.
Back to the results of the paper. You may recall that I said that for lattices with narrow gaps, the adjacent bacterial vortices spin oppositely, and for wide gaps adjacent vortices spin in the same direction. The former case corresponds to antiferromagnetism, and the latter to ferromagnetism. By changing the size of the gaps, they can ordain what kind of "magnet" these bacterial colonies will be. The critical size where the behaviour crosses over is about 8 microns.
People invariably ask what the practical applications of a given paper are. I will quote the how-we-will-save-the-world-if-we-get-more-funding section from the last paragraph, where the authors state: "Improved prevention strategies for pathogenic biofilm formation, for example, will require detailed knowledge of how bacterial flows interact with complex porous surface structures to create the stagnation points at which biofilms can nucleate."
Overall, very cool paper.
*Named after Ernst Ising and also a good name for a physics hockey team.
**Still haven't decided to go with American or Canadian spelling on this one.
Progress in 3D ultrasound technology allows one to view a three-dimensional volume image of the developing fetus. If captured rapidly and animated, the images produce a 4D ultrasound, which involves additional movement. The risks are the duration of the ultrasound, the intensity of ultrasound waves, and the frequency of ultrasound exposure. Not in any circumstances should a 3D or 4D ultrasound substitute prenatal care. http://www.mordocrosswords.com/2016/08/unharden-earth-in-way.html
ReplyDeleteWhat the hell.
DeleteThis comment has been removed by the author.
Delete